
Design Space Exploration of URL Shortening Service

Dhruv Deshmukh
dhruvr@iitbhilai.ac.in

Harsh Vardhan
harshv@iitbhilai.ac.in

Abdurrahman Khan
abdurrahman@iitbhilai.ac.in

Shubham Gupta
shubhamgupta@iitbhilai.ac.in

Shashwat Jaiswal
shashwatj@iitbhilai.ac.in

Gagan Raj Gupta
gagan@iitbhilai.ac.in

1. INTRODUCTION
Design space exploration is an important step in designing
any large scale computer system. It allows one to analyze
the price, performance and consistency of different design
dimensions available and aids in choosing the design giving
optimal performance per unit price while meeting all ap-
plication requirements. Our current works endeavours to
analyze a few different design choices for a URL Shorten-
ing Service and test their performance at scale. The setup
and implementation of the choices in consideration has been
done using the AWS infrastructure. We have tried to include
as diverse and commonly used design choices as possible so
as to make this study inclusive of answers to questions that
modern system designers may face. We have compared met-
rics like response time, throughput and price per transaction
for these designs.

URL Shortening Service has much in common with larger
and more complex systems. Specifically, it comprises all the
basic operations such as load balancing, application server
pool, caching, database and analytics that any software sys-
tem may offer to its users. One can build upon these basic
services to make complex systems like Dropbox and Social
Media Apps. Towards this end, we discuss various insights
gained through our experiment and possible improvements
to the system and design choices.

One can find several Design Space Exploration research
papers for various types of systems but surprisingly very few
of them have analyzed an application like a URL-shortening
service. Many websites present approaches to design a URL-
Shortening service but their claims are not supported by
experimental results. It is also not clear if the design choices
will work at the scale of a real-world service such as Bitly.
Our paper takes a more practical approach by trying out
different database choices like SQL, key-value pair based
NoSQL and document based NoSQL as well as choices such
as decoupling read and write servers and caching.

2. REQUIREMENTS AND CAPACITY ES-
TIMATES:

These requirements and assumptions for the workload and
capacity estimation of our systems are in accordance with
similar real world systems like Bitly and TinyURL.

2.1 Requirements

Copyright is held by author/owner(s).

• Given a URL, the service should generate a shorter
and unique alias of it.

• When users access a short link, the service should redi-
rect them to the original link.

• Users should optionally be able to pick a custom short
link for their URL.

• Links will expire after a standard default timespan.
Users should optionally be able to specify the expira-
tion time.

• The system should be highly available.
• URL redirection should happen in real-time with min-

imal latency.
• The shortened links should not be predictable.

2.2 Workload and Capacity Estimates
The average size of a URL has been assumed to be 100 bytes.
We assume that 500 million new short URLs are created ev-
ery month. We assume the read to write ratio to be 100:1 as
redirection to shortened URLs will be much frequent than
creation of new shortened URLs. Also, we assume that traf-
fic generated follows the 80-20 rule i.e. 20% of the URLs
generate 80% of the traffic. The Table 1 summarizes work-
load and capacity estimates based on the assumptions made
above.

Category Estimate
New URLs 200 /s

URL re-directions 19 K/s
Incoming data 20 KB/s
Outgoing data 1.8 MB/s

Storage for 5 years 3 TB
Memory for cache 34 GB

Table 1: Workload and Capacity Estimates

3. DESIGN CHOICES
We will primarily focus on three design choices in our anal-
ysis:

Choice Choice 1 Choice 2 Choice 3
Language Golang EJS EJS
App Server Unified Decoupled Unified

Load Balancer Classic Application Application
Consistency Eventual Strong Strong
Database Amazon Amazon Amazon

DynamoDB MySQL RDS DocumentDB
Redis Cache Yes Yes No

Table 2: Design Choices

Choice 1: Golang is coupled with Amazon’s DynamoDB
to reach a state of eventual consistency model. The idea
behind the eventual consistency is the human eye-hand co-
ordination time and screen response time. The Redis Cache
improves performance by caching the most frequent URLs.
Classic Load Balancer and Golang are a good combination
for design of Microservices because of their simplicity and
speed.

Choice 2: MySQL provides ACID Constraints and Strong
Consistency. The Nodejs library has built-in support li-
braries to host a MySQL Server. We have two types of
requests write(high service time) and read(low service time).
Decoupling works best in such a scenario. The Application
Load Balancer can be configured to send write requests to
a group of servers and read requests to another group thus
giving us a Size Interval Task Assignment type policy for
task assignment.

Choice 3: MERN(MongoDB, Express, React, Nodejs) is
very popular tech stack. The best part of the combination
is the use of JSON format for storing and parsing of data
in both server(Nodejs) and database(MongoDB). We divert
from this stack a bit by using Amazon DocumentDB instead
of MongoDB as both use document based NoSQL storage.

4. QUEUING MODEL

Figure 1: Queuing cum System Design Model for
Read Requests in Choice 1

Figure 1 depicts the anatomy of a read request for Design
Choice 1. We assume that write requests are for new URLs
and therefore will directly update DynamoDB without need-
ing an update to the cache. In the decoupled model used in
Design Choice 2, the application servers will be partitioned
into two groups(read servers and write servers). The classic
load balancer will be replaced by application load balancer
and DynamoDB with RDS MySQL. In Design Choice 3,
there is no cache hence while reading the database is visited
directly.

The arrival of processes is modeled as a Poisson process.
Considering the read-write ratio and the cache-hit and miss
scenarios we can categorize job sizes into 3 types given in
the table below.
Read/Write Category Time Taken Probability

Write New Trdb + Twdb
1

101

Read Cached Trc
100 ∗ p
101

Read Not Cached Trc + Trdb
100 ∗ (1− p)

101

Table 3: Category of requests

The above table gives the distribution of incoming job
sizes where Trdb, Twdb and Trc are the random variables
representing the time to read from db, the time to write
to db and the time to read from cache. Let us call this
distribution L. So the queue at load balancer can be modeled
as M/L/k. The queuing model at each server will depend
on the task assignment policy of load balancer. For Classic
LB the policy is Join the Shortest Queue and Application
LB it is Round-Robin[3].

5. EXPERIMENTAL SETUP
The implementations consist of a Load Balancer configured
for receiving HTTPS requests at port 443. A self signed
x509 certification is used for TLS implementation. The load
balancer distributes the incoming load among a total of 12
t2.micro EC2 instances. In case of design choice 2 the 12
instances are divided into 2 write servers and 10 read servers.

Each of the databases has been pre-populated with ap-
proximately 10 million URLs. The URLs are mostly syn-
thetic and have been created using some real URLs as base
URLs and appending characters to these URLs. A Redis
cache with 1 primary node(cache.t2.micro) and 2 replicas
was used in Choice 1 and a Redis cluster with two shards
having 2 replicas each was used in Choice 2 . The size of the
cache is 0.5 GB. Thus the cache capacity is about 1 million
URLs.

For testing, we deployed 5 VMs each sending around 4000
requests/second (RPS), giving about 20,000 RPS as well as
200 writes per second from a single EC2 t2.micro instance
as the background load on the system. To mimic an user
activity we setup another EC2 t2.micro instance that sends
read requests at an average rate of 2 requests. The latency
observed by this user is plotted and used for analysis. To
have a fair comparison with Bitly in terms of latency this
user is setup in the same region in which the server is run-
ning. In our case this was the Asia-Pacific South-1 Region
and for Bitly it was the US N, Virginia region.

The traffic is modeled as a Pareto Distribution . To gen-
erate this traffic we use a tool for load-generation known
as k6. The instances generating the background traffic sim-
ulate 1000 virtual users such that the net requests/second
from that instance is about 4000 as mentioned above while
the instance that mimics a user has only one virtual user.
After a soak period of 1 hr, the test for each choice lasted
for 30 minutes.

6. RESULTS & DISCUSSION

Metric Choice 1 Choice 2 Choice 3
Latency(avg) 28.17ms 12.36ms 1.23s
Latency(P(95)) 112.13ms 37.43ms 3.78s

BAL 251.35ms 361.176ms 797.97ms
Throughput(MB/min) 34.920 22.133 5.049

RPSPI (Avg) 14,162.336 10,585.95 1561.5
PPM[4] (avg) 243.62 268.25 367.16

CPTPS (×10−15) 1.86 2.04 2.80

Table 4: Table illustrating the performance metrics
Note: RPS is Requests per Second, PPM is Pricing
Per Month , CPTPS is Cost per Transaction per
Second, BAL is average background latency(It has
added network delay and queuing delay as many
TCP connections on loading servers)

Figure 2: Latency vs Time graph for Choice 1

Figure 3: Latency vs Time graph for Choice 2

The results show that the choice 2 performs better in
terms of average latency than choice 1. More importantly,
choice 1 is much worse than choice 2 when compared on
the 95th percentile latency i.e 112ms and 37ms respectively.
This can be accredited to the performance of DynamoDB as
it provides reliable average low double digit latency but the
maximum latency can be in the hundreds of milliseconds
or even higher[2]. This gives us a contrast in the latency
and throughput capacity of RDS and DynamoDB. Choice
3 didn’t seem to perform at all in the present scenario due
to no caching. It is the costliest and the slowest performing
system of the three. This can be further improved by adding
indexes to the shorturl attribute in the db.

Figure 4: Latency vs Time graph for Choice 3

Choice 1 is the cheapest of the options with an approxi-
mate cost of $1.86× 10−15 per transaction with Choice 2 as
the second cheapest. Design choice 1 however seems to be
more sensitive to the network input. It can be observed in
Fig. 2 that with slight increase in the load of the server the
latency increases.

We also took reading of bitly.com ’s shortening and redi-
rection latency from ec2 instances in different aws regions:

Region US South America Asia Pacific
(N. Virginia) (Sau Paulo 2) (Mumbai)

Latency(avg) 12.2ms 125.56ms 283.79ms
Ping RTT 0.633ms 1.079ms 1.381ms
Local Time 6:40 AM 7:40 AM 4:12 PM

Table 5: Table illustrating Bitly’s perfromance in
various AWS regions

It seems that Bitly has deployed its services in all the 3
as the ping RTT is similar for all of them. The load on
North-America region seems to be low and the latency is
comparable of our deployments. However, the other two
regions have latency higher than 100ms ans 200ms respec-
tively.
The deployed and simulated scale loads on our systems com-
parable to Bitly were achieved. Design choices 1 and 2 seem
comparable in the latency and cost metric, however we need
to regularize the load on both the design further to obtain
a better comparison. The choice 3 needs to be optimised
and scaled to handle the load. Further research will focus
on improving the design choices based on the observations
and regularization of the testing environments.

7. REFERENCES
[1] L. Nardi, D. Koeplinger and K. Olukotun, ”Practical
Design Space Exploration,” 2019 IEEE 27th International
Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), 2019,
pp. 347-358, doi: 10.1109/MASCOTS.2019.00045.
[2] https://medium.com/textnowengineering/the-whacking-
game-ee3af79c6e13
[3] https://docs.aws.amazon.com/elasticloadbalancing/latest/

userguide/how-elastic-load-balancing-works.html
[4] https://calculator.aws//

	Introduction
	Requirements and Capacity Estimates:
	 Requirements
	Workload and Capacity Estimates

	Design Choices
	Queuing Model
	Experimental Setup
	Results & Discussion
	References

